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Abstract: Pearson product–moment correlation coefficient between item g and test score X, known as item–test or item–total 
correlation (Rit), and item–rest correlation (Rir) are two of the most used classical estimators for item discrimination power (IDP). 
Both Rit and Rir underestimate IDP caused by the mismatch of the scales of the item and the score. Underestimation of IDP may be 
drastic when the difficulty level of the item is extreme. Based on a simulation, in a binary dataset, a good alternative for Rit and Rir 
could be the Somers’ D: it reaches the ultimate values +1 and –1, it underestimates IDP remarkably less than Rit and Rir, and, being a 
robust statistic, it is more stable against the changes in the data structure. Somers’ D has, however, one major disadvantage in a 
polytomous case: it tends to underestimate the magnitude of the association of item and score more than Rit does when the item 
scale has four categories or more. 
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Introduction 

In traditional educational and psychometrical test settings, we are interested in the reliability of the score or 
measurement scale, that is, the efficiency of the test score to discriminate between the lower- and higher-scoring test 
takers. The magnitude of reliability is strictly dependent on the discrimination power of single items in the compilation, 
that is, of the efficiency of the single items to discriminate between lower- and higher-scoring test takers (see Lord & 
Novick, 1968). The less the test items can discriminate the test takers from each other, the more items we need to reach 
high reliability and, in a parallel manner, the higher the discrimination power of the items, the shorter the test we can 
construct to reach the same efficiency. Therefore, we are interested in item discrimination power (IDP), the estimators 
of IDP, and the estimates they produce.  

Operational definition of IDP 

It is difficult to find a unanimous definition of IDP in the literature. The “definitions” tend to be as loose as that given by 
Lord and Novick (1968; see ETS, 2019; Liu, 2008; MacDonald & Paunonen, 2002) condensed above as “efficiency to 
differentiate between the lower and higher performing test takers”. In order to define the concept in a manner that 
makes it possible to assess the possible under- and overestimation produced by different estimators of IDP, an 
important concept related to IDP, deterministic discrimination, is discussed here. Deterministic discrimination refers to 
an ultimate pattern where the score explains perfectly the behavior in the item, and then we expect to see the perfect 

explaining power (EP) between two variables ( ) that implies the perfect association ( ). 

From the viewpoint of both the Pearson’s product–moment correlation between the item g and the score X and Somers’ 
D mainly discussed in this article, the perfect EP is achieved when the order of the cases both in the item and the score 
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are identical. Hence, an operational definition of the ultimate IDP could be as follows: A test item is ultimately reliable 
when the score can predict the behavior of the test-takers in the test item in a deterministic manner. A parallel practical 
definition of the ultimate IDP could be as follows: The discrimination power of the test item is ultimate when, after 
arranging the test takers by the score or measurement scale, the item can discriminate the lower performing test takers 
from the higher performing test-takers in a deterministic manner. If we observe a deterministic pattern, the index of IDP 
should be able to detect it. If, under these conditions, the estimators based on the correlations (such as biserial-, point-
biserial-, polyserial-, or polychoric correlation) or ratios (such as Goodman–Kruskal Tau and Lambda, Somers’ D, 
Pearson’ Eta, or Kelley’s discrimination index) give a value lower than 1, this indicates obvious underestimation of IDP. 
Similarly, the values higher than 1 indicate obvious overestimation of IDP. We may note that the indicators related to 
item response theory (IRT) and Rasch modelling, such as a-parameter (Birnbaum, 1968) and discrimination index by 
Verhelst, Glas, and Verstralen (1995), do not follow this logic. Basically, these indicators cannot reach the ultimate value 
because this condition presumes a dataset without stochastic error. 

Some classical estimators reflecting the “true” IDP 

In general, the indices of item discrimination summarize an item’s relationship with a trait of interest (Moses, 2017) . 
Within the classical test theory, we have several estimators for IDP; Oosterhof (1976) compared 19 of those (see also 
Cureton, 1966a, 1966b; ETS, 1960; Liu, 2008; Wolf, 1967). Two estimators based on the mechanics of Pearson’s 
product–moment correlation coefficient (Pearson, 1896), the point-biserial coefficient of correlation also known as 
item–total correlation ( , Rit), and item–rest correlation also known as the corrected item–total correlation 

coefficient ( , Rir, Henrysson, 1963) may be the most frequently used indices of IDP. This can be deduced from the 

fact that they are set as default for the classical item analysis in the widely used general software packages such as 
SPSS, STATA, and SAS (see IBM, 2017; Stata corp., 2018; Yi-Hsin & Li, 2015). One challenge with these estimators is 

that, in real-life test settings, Rit
 
or Rir cannot reach the value  because of the mismatch of the marginal 

scales of the item and the score. Underestimation may be drastic depending on the difficulty level of the item (see 
Metsämuuronen, 2016; 2017a, see also Table 1). From the deterministic pattern viewpoint it is pathological that, 
irrespective of the fact that the item would discriminate deterministically between the lower- and higher-scoring test 
takers and we would expect to see the perfect EP and the perfect IDP, the estimates by Rit

 
and Rir approximate zero 

with the items of extreme difficulty level. 

Another kind of challenge specifically with Rit is that the estimates are inflated because the score also includes the item 
of interest. Inflation has been characterized as “spurious” (e.g., Cureton, 1966b, p. 93; Howard & Forehand, 1962, p. 
731; Wolf, 1967, p. 21). It is obvious that the less items we have comprising the score, the more effect has a single item 
in the score. Hence, in theory, using Rir or some other index correcting the inflation would be appropriate or even 
strongly recommended (see Liu, 2008). However, knowing that Rit may underestimate EP between the item and the 
score as much as 0.25 units of correlation or more (see Metsämuuronen, 2016, see Table 1)—and Rir underestimates 
IDP even more (see Metsämuuronen, 2017a, see Table 1)—inflation of a magnitude of 0.04–0.07 units of correlation 
may be taken as a secondary theoretical challenge. 

The family of biserial ( ), polyserial ( ), and polychoric ( ) correlation coefficients (Pearson, 1900; 1913) 

assume that continuous and normally-distributed traits underlie dichotomized or polytomized items and polytomized 

scores. Crocker and Algina (1986) specifically suggest using  instead of with the items of extreme difficulty level 

for overcoming the underestimation of . The magnitudes of the estimates by , , and  tend to be higher 

than those by . However, of these,  and  tend to give obvious overestimation in certain cases. This is strictly 

seen in the formula of  generalized from Olson, Drasgow, and Dorans (1982): 

       (1) 

where  is the standard normal density related to the proportion of correct answers (p) and . The 

magnitude of the estimates by  is maximal when  and item variance is maximal, that is, when  

implying p = 0.5. Then, , , and . From Eq. (1) we strictly infer 

that when the item variance is maximal,  gives an obvious overestimate when  (=0.399/0.5). On the 

other hand,  and  tend to underestimate item discrimination, especially with the items of extreme difficulty 

level. Seen in Eq. (1), the magnitude of  and is strictly dependent of the magnitude of . Since the magnitude 

of the estimates by  approximates zero with the extremely easy and difficult items, the magnitude of the estimates 
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by  and  also approximates zero irrespective of the fact that the score would explain the behavior in the item in 

a deterministic manner. To overcome the challenge of the obvious overestimation in  and , Lewis, Thayer, and 

Livinstone (2003 cited in Livinstone & Dorans, 2004) developed a coefficient called r-polyreg correlation, an r-
polyserial estimated by regression correlation. This coefficient can be used with binary or polytomously scored items 
and it produces estimates that do not exceed 1, nor does it rely on bivariate normality assumptions (Moses, 2017). 
Other solutions have also been offered, for example, by Brogden (1949) and Henrysson (1971). 

As with  and , the magnitude of the estimates by  tends to be higher than by . Additionally, the 

estimates by  seem to produce more accurate reproduction of the measurement models used to generate the data 

(Holdago–Tello et al., 2010) and the estimates tend to produce unbiased estimated standard errors in the SEM analysis 

(Rigdon & Ferguson, 1991) even in small sample sizes (Flora & Curran, 2004). has been found to have advantages 

over the product–moment correlation coefficient in factor analysis (e.g., Holgado–Tello, Chacón–Moscoso, Barbero–
García, & Vila-Abad, 2010) and specifically, in SEM analysis with ordinal datasets (e.g., Flora & Curran, 2004; Jöreskog, 
1994; Rigdon & Ferguson, 1991; Uebersax, 2015) as well as in IRT and Rasch modeling (e.g., Forero & Maydeu-Olivares, 
2009; Moustaki, Jöreskog, & Mavridis, 2004; Uebersax, 2015). However, a drastic challenge within the item analysis 

settings is that, by using instead of , we do not know what kind of composite the item discrimination refers to; 

we no longer refer to a known observed composite but, instead, a hypothetical composite the research is not privy to. A 

computational challenge is that, by using the established routines for estimating  (e.g., Lancaster & Hamdan, 1964; 

Olsson, 1979; Tallis, 1962), the estimates cannot reach the extreme values +1 and –1.  

All in all, the indices discussed above cannot identify deterministic (or near-deterministic) relationships between item 
score and total score. Some estimators provide us obvious underestimations and overestimations, and some refer to an 
unreachable test score. 

Some directional estimators of IDP as an option for Rit and Rir 

One challenge of the above-mentioned classical estimators, in addition, is that they do not take into account the 
assumed directional relationship (i.e., the assumption as noted, for example, in Byrne, 2001; Metsämuuronen, 2017b) 
between the item and the score: in psychometric theory, the overall trait being measured generally drives examinees’ 
responses to, and, thus, scores on individual items. 

There are directional measures of correlation that are consistent with the assumption that an overall trait drives 
examinee responses to individual items. Some of such measures are the directional coefficients Goodman‒Kruskal 
Lambda and Tau (Goodman & Kruskal, 1954), Pearson’s Eta coefficient ( ) (Pearson, 1903, 1905), and Somers’ D 

(Somers, 1962). These measures seem promising in overcoming the issues with the measures previously introduced 
though, as being nonparametric measures with a tendency to be less efficient than their parametric counterparts (see 
Metsämuuronen, 2017b; Öllerel & Croux, 2010; Siegel & Castellan, 1988), they tend to underestimate association 
between two variables. However, an advantage of the nonparametric measures, especially of Somers’ D, is that it can 
reach the ultimate values correctly (Newson, 2002). Unlike the other directional indices mentioned above, Somers’ D 
can identify both positive and negative monotonic deterministic relationships between item score and total score.  

Behavior of the estimators: A practical example 

Table 1 illustrates the behavior of the previous estimators of IDP by using two sets of items: a binary set (items A1, A2, 
A3) and a polytomous set (items B1, B2, B3). In both sets, one item follows deterministic pattern without stochastic 
error (A1 and B1) and we expect to see perfect item discrimination, while other items include stochastic error either to 
a minor (A2 and B2) or greater extent (A3 and B3). In all cases, the score discriminates the test takers in a deterministic 
manner. 

From the data in Table 1 we see that both item-total and item-rest correlation underestimate IDP remarkably; this is 

seen clearly in the deterministic patterns (A1 and B1) where we expect to see  but observe values 0.53–

0.75. Another character of the item-total correlation is also worth noting here. In the binary case, point-biserial 

correlation is factually a directional coefficient: the magnitudes of the estimates by η (score dependent) and are 

identical. Notably,  exceeds the limits with item A1 (1.023). Though  is not defined in the deterministic patterns 

(A1 and B1), its values seem to be close of those by Somers’ D when the item discrimination is low (0.199 vs. 0.200 in 

A3 and 0.399 vs. 0.400 in B3). The value of Somers’ D seems to be higher than  with binary item (0.947 vs. 0.921 in 

A2) while the values of seems to be higher than Somers’ D in the polytomous case (0.965 vs. 0.914 in B2) if item 

discrimination was high. Further research on the relation of  and Somers’ D may enrich our understanding. 
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Table 1. Example of the behaviour of selected directional coefficient of correlation 

Test taker ID A1  A2  A3 B1  B2  B3 (other items) Score (X) 

1 0 0 0 0 0 0 . 1 

2 0 0 0 0 0 0 . 2 

3 0 0 0 0 0 0 . 3 

4 0 0 0 0 0 0 . 4 

5 0 0 0 0 0 0 . 5 

6 0 0 1 0 0 0 . 6 

7 0 0 0 0 0 0 . 7 

8 0 0 0 0 0 0 . 8 

9 0 0 1 0 0 1 . 9 

10 0 0 0 0 0 0 . 10 

11 0 0 0 0 0 0 . 11 

12 0 0 1 0 0 2 . 12 

13 0 0 0 0 0 0 . 13 

14 0 1 0 0 1 0 . 14 

15 0 0 1 0 0 4 . 15 

16 1 0 0 0 0 0 . 16 

17 1 1 0 1 0 0 . 17 

18 1 1 1 2 2 3 . 18 

19 1 1 0 3 3 0 . 19 

20 1 1 0 4 4 0 . 20 

Item‒total correlation ( ) 0.751 0.711 0.150 0.659 0.636 0.326  
 

Item‒rest correlation ( ) 0.715 0.671 0.076 0.526 0.497 0.138   

Biserial and polyserial correlation ( ) 

 

1.023 0.959 0.205 0.931 0.898 0.460   

Polychoric correlation ( ) not dfnd 0.921 0.199 not dfnd 0.965 0.399   

Goodman & Kruskal Lambda (item dependent) 1 1 1 1 1 1  
 

Goodman & Kruskal Lambda (score dependent) 0.053 0.053 0.053 0.211 0.211 0.211  
 

Goodman & Kruskal Tau (item dependent) 1 1 1 1 1 1  
 

Goodman & Kruskal Tau (score dependent) 0.053 0.053 0.053 0.211 0.211 0.211  
 

Somers D (item dependent) 0.395 0.374 0.079 0.368 0.337 0.147  
 

Somers D (score dependent) 1 0.947 0.200 1 0.914 0.400  
 

Pearson Eta (item dependent) 1 1 1 1 1 1  
 

Pearson Eta (score dependent) 0.751 0.711 0.150 0.699 0.653 0.368  
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A comparison of the directional coefficients in Table 1 shows that only Somers’ D detects the deterministic pattern in 
the items. Though it seems that L, T, and  also can detect the deterministic item discrimination, it is just apparent. 

Namely, the values L (item dependent) = T (item dependent) =  (item dependent) = 1 refer to the behavior of the 

score instead of the item. We can infer this from items A2, A3, B2, and B3 with stochastic error: the stochastic error 
should cause a change in the value of the indices. However, among the directional measures, this change can be seen 
only in Somers’ D (score dependent) and  (score dependent). Of these,  (score dependent) cannot detect the 

deterministic pattern in items A1 and B1, though the value is higher than Rit with the polytomous item. 

All in all, Somers’ D so directed that (paradoxically) the “score is dependent”, that is, D(g|X)†, finds the ultimate IDP 
correctly and is capable of reaching both the negative and positive limits and, hence, has the potential of being 
considered as a serious alternative for Rit and Rir. We note the illogical wording of the direction with Somers’ D in 
Table 1 in comparison with the traditional way of using the term “dependent.” When, in the standard general linear 
modeling, we use the concepts of “dependent” and “independent,” the “independent” factor (gender, for example) is 
used to explain the differences in the “dependent” variable (such as the score). Here, when the score is “dependent,” we 
would expect that the item explains the differences in the score. However, it seems that this logic does not hold when 
using Somers’ D: when the score is “dependent,” the score explains the behavior in the items as inferred from Table 1. 

Somers’ D in the practical settings of educational measurement 

Because Somers’ D may be somewhat unfamiliar to some users in the practical educational measurement settings, 
relevant computational matters are discussed here. In general, Somers’ D is used as a directional measure of association 
of two ordinal or continuous variables. We may be interested in knowing, as an example, how well the educational level 
explains the attitudes toward education or, vice versa, how well the attitudes explain the educational level (see the 
manual calculation in Metsämuuronen, 2017b). In the educational measurement settings, though, we maybe more 
interested in a specific direction of the association, that is, how well the score, i.e. the latent trait, explains the behaviour 
in an item rather than other way around.  

As many nonparametric coefficients of association such as Kendall’s tau and Goodman–Kruskall Gamma, Tau and 
Lambda, also Somers’ D uses the concepts of concordance and discordance between the item (g) and the score (X) in 
the calculation. For the calculation,  the concepts related to a R x C crosstable are usually used (see Siegel and Castellan, 
1988; Metsämuuronen, 2017b); let us denote the dimension R for items and C for the score: 
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In the practical educational testing settings, if some of the general statistical software packages is in use, Somers’ D is 
simple to calculate. In IBM SPSS, we select Analyze > Descriptive Statistics > Crosstabs... > Statistics… > Somers’ D. The 
corresponding syntax in IBM SPSS is CROSSTABS /TABLES=item BY Score /STATISTICS=D. In SAS, the command PROC 
FREQ provides exact tests for Somers’ D by specifying the SMDCR and SMDCR options in the EXACT statement.  
Correspondingly, RStudio, as an example, uses the syntax SomersDelta (x, y = NULL, direction = c("row", "column"), 
conf.level = NA, ...). 

However, if no general package of statistical tools is in use, the manual calculation starts by ordering the test takers by 
the score X. Assume that we are interested in the specific binary item g—naturally we are interested all of the items and 
these are not restricted to binary ones though here we use this as an example. Assume that we would have obtained the 
following dataset with N = 10 test takers ordered by the score—Johan scores the highest (21 points) and John the 
lowest (0 points).  

Test taker John Jill James Jonah Jennifer Jenny Jacob Judy Jane Johan 
Score X 0 1 4 4 10 14 15 16 20 21 
Item g 0 1 0 1 0 0 1 0 1 0 

 

                                                        
† Note here the untraditional direction of condition (g|X) usually used with Somers’ D. This notation corresponds with the traditional 
thinking of condition: “g in condition of X”, that is, g is dependent on X, that is “g dependent”. However, with Somers’ D, this notation 
is called “X dependent”. In this article, the specific notation D(g|X) refers to “g dependent” but, in the formulae, the traditional 
notation of Somers’ D is used. This unorthodox marking is noted when a possibility for an imminent misunderstanding occurs. 
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We form a frequency table of the score and the item: 

  Score X  
  0 1 4 10 14 15 16 20 21 marg. distr. of g 
item g 0 1 0 1 1 1 0 1 0 1 6 

1 0 1 1 0 0 1 0 1 0 4 

 marg. distr. of X 1 1 2 1 1 1 1 1 1 10 

For calculating Somers’ D, all pairs of observations are compared and the sums of concordant pairs (P) and 
disconcordant pairs (Q) are formed. If a pair of observations gi and gj and corresponding Xi and Xj have ranks in the 
same direction, the pairs are concordant. We denote each cell frequencies by nij. For the concordant pairs, we calculate 

how many observations there are in the cells below and to the right of the cell nij. These are denoted by . For the 

first cell n11, we get . For the next cell the value is  and 

so on until the last one . Correspondingly, the disconcordant pairs denoted by  are found in the cells below 

and to the left of the cell nij. The first ones are related to the cell n12 and n13:  and . All possible 

values for  and  are computed and these are multiplied by the related nij. In the example, the number of all the 

pairs in the same direction, that is, the concordant pairs, is 

, , , 

, , , , 

, altogether  .  

Correspondingly, the number of all the pairs in the opposite order is: 

, , , , 

, , , 

, altogether . 

By using the concepts of P and Q, Somers’ D (item dependent) can be calculated as  

     (2) 

where  is the number of cases in the categories c = j related to score X. In the case,  

  (3) 

Parallel, Somers’ D (score dependent) is  

   (4) 

Of these, the latter tells (though paradoxically named) the behavior of the item and the former indicates the behavior of 
the score (see Table 1). Either way, the item g of interest cannot discriminate the test takers from each other which was 
obvious from the dataset.  

The magnitude of Somers’ D varies within ‒1 and +1 and, hence, unlike Goodman–Kruskal Gamma, Lambda and Tau, it 
can reach the negative values as well as positive values. With regard to item analysis, D = 1 always when the order of 
the test takers in the item is the same as that in the score regardless of the number of cases, dimensions in the item and 
the score, the number of tied values, difficulty levels in the items, or the number of items on the test. In such cases, all 
the pairs of gi and gj and corresponding Xi and Xj are in the same direction, and therefore, the maximum value of the 
directional rank correlation is obtained. The value D = ‒1 is obtained when the order of the test takers in the item is 

ijN 

11 1 1 0 0 1 0 1 0 4N           12 1 0 0 1 0 1 0 3N         

18 0N   ijN 

12 0N   13 0 1 1N    

ijN 

ijN 

 11 11 1 1 1 0 0 1 0 1 0 4n N             12 12 0 1 0 0 1 0 1 0 0n N            13 13 1 0 0 1 0 1 0 2n N         

 14 14 1 0 1 0 1 0 2n N          15 15 1 1 0 1 0 2n N         16 16 0 0 1 0 0n N        17 17 1 1 0 1n N     

 18 18 0 0 0n N     4 0 2 2 2 0 1 0 11ij ij

ij

P n N          

 12 12 0 0 0n N      13 13 1 0 1 1n N       14 14 1 0 1 1 2n N        15 15 1 0 1 1 0 2n N       

 16 16 0 0 1 1 0 0 0n N          17 17 1 0 1 1 0 0 1 3n N           18 18 0 0 1 1 0 0 1 0 0n N          

 19 19 1 0 1 1 0 0 1 0 1 4n N            0 1 2 2 0 3 4 12ij ij

ij

Q n N         

 

 
item dependent

2 2

1

2
R C c

Cj

j

P Q
D D

N n



 



Cin

 

 

 

 2 2 2 2 2 2 2 2 2
2 2

1

2 2 11 12 2
0.022

8910 1 1 2 1 1 1 1 1
R C c

Cj

j

P Q
D

N n


  
    

       


 

   
score dependent 2 2 2

2 2

1

2 2 2
0.042

4810 6 4
C R r

Ri

i

P Q
D D

N n


  
     

 




   International Journal of Educational Methodology  213 
 

opposite in comparison with the score. The value D = 0 is obtained when the number of concordant pairs equals the 
disconcordant pairs as in the example above.  

We may recall that Somers’ D has a long history in item analysis though it is not much discussed. Namely, the robust 

rank–biserial coefficient of correlation  (Cureton, 1956; see also Glass, 1966, who derived the same coefficient from 

different grounds) related to the nonparametric and directional U-test statistic (Wendt, 1972) is shown to be a special 

case of Somers’ D (Newson, 2008). While  is restricted to binary case, Somers’ D can be used also with the 

polytomous items. Because of the connection with U-test statistics, we know that Somers’ D directed so that the score 
explains the behavior in the item, that is, Somers’ D(g|X), essentially, indicates the slightly modified proportion of 
correctly ordered test takers in the item after they are ordered by the score. This fits quite well with operational 
definitions of IDP above. 

Research question 

From the practical example above and the general behavior of Somers’ D it is known that this specific coefficient could 
be a potential alternative for item–total and item–rest correlation in reflecting IDP. The dataset in Table 1 is small and a 
theoretical one. We do not know how well Somers’ D behaves in the real-life datasets with varied test difficulty, 
reliability, number of items, number of test takers, and the marginal distribution of the score as well as with items with 
varying difficulty levels, discrimination power, and the marginal distribution of the score. These matters are studied in 
detail through a simulation with empirical datasets. 

Methodology 

The simulation dataset 

The characters of Somers’ D(g|X)—hence forth D—in comparison with Rit —hence forth R—are studied with a 
simulation of 13,392 items from 1,296 tests with varying characteristics based on different combinations of randomly 
selected test takers from an unpublished national-level dataset of 4,500 grade 9 test takers of a mathematical 
proficiency test (FINEEC, 2018). The original set of the data was used to prepare several smaller datasets with varied 
difficulty levels ( ), magnitude of reliability ( ), test lengths (k), number of cases (N), and degrees of freedom in the 

item, df(g) = number of marginal categories minus 1 and in the score, df(X) = number of marginal categories minus 1.  

The original real-world dataset did not include extremely difficult items. Hence, two kinds of datasets were constructed 
for the simulation—those based on real-world test takers (83%) and those based on artificial ones (17%). In the first 
phase, three sets of 10 random samples of sizes n = 200, 100, and 50 with 30 dichotomous items were picked from the 
original real-life dataset. Two additional artificial 30-item datasets—an extremely difficult one and a moderately 
difficult one—were created to enrich the data. Hence, after the first phase, the number of datasets totaled 3 × 12 = 36. 

In the second phase, eight shorter tests were constructed based on the 36 datasets with 30 items by varying the 
degrees of freedom in the score. These tests comprised 20, 21, 22, 24, 26, 27, 28, and 30 items. After the second phase, 
the total number of tests was 36 × 8 = 288 partly dependent tests. In the third phase, each of the 288 tests was used to 
create tests with the varied degrees of freedoms of the items. The test with 21 binary items is used as an example of the 
logic. 

A set of 21 binary items with gradually increasing difficulty levels can be divided into three sets of subtests related to 
the same score. One of these is the traditional test including all 21 items as separate binary items, that is, a test of 21 
binary items with the range of 0–1 in the item scale (k = 21; df(g) = 1). The other extreme is the test with three 
“parallel” sums of every third item. These three scores formed three “items” with the range of 0–7 in the item scale (k = 
3; df(g) = 7). The third subtest comprised one test of seven parallel sums of every seventh item with the range of 0–3 in 
the scale (k = 7; df(g) = 3). Hence, with the original 21 items, three tests were formed, and these produced 31 items with 
different characteristics: 21 items with df(g) = 1, seven items with df(g) = 3, and three items with df(g) = 7. 

Similarly, the sets of 22, 26, and 27 items produced three such “parallel” sets of tests, while those of 20, 24, 28, and 30 
items produced 5, 7, 5, and 7 sets of tests, respectively—altogether 36 tests in each 3 × 12 dataset. Thus, a total of 36 × 
36 = 1,296 tests was produced with varied values of test difficulty, reliability, number of items, number of test takers, 
and df(X) (see Table 2). Consequently, the procedure provided us with 13,392 items with varying difficulty levels, 
discrimination power, and df(g) (see Table 3).  

 

 

 

 

RB

RB

p 
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Table 2. Selected characteristics of 1,296 tests in simulation 

Difficulty 
level 
(average p) 

Description Average 
reliability 

( ) 

Average 
R 

Average 
D 

Number 
of 

datasets 

Remark 

0 – 0.299 Extremely difficult 0.901 0.785 0.766 47 Artificial 

0.3 – 0.399 Very difficult 0.927 0.809 0.770 112 Artificial/Real-world 

0.4 – 0.499 Difficult 0.956 0.863 0.826 57 Real-world 

0.5 – 0.599 Mediocre 0.833 0.720 0.652 142 Real-world 

0.6 – 0.699 Easy 0.867 0.728 0.666 721 Real-world 

0.7 – 0.799 Very easy 0.863 0.731 0.673 217 Real-world 

Total  0.873 0.743 0.685 1,296  

Table 3. Selected characteristics of 13,392 items in simulation 

df(g) Number 
of items 

Average 
R 

Average 
D 

Average item 
difficulty 

( ) 

Average item variance 

( ) 

1 7131 0.5063 0.6284 0.6097 0.2108 
2 2715 0.6463 0.6698 0.6125 0.5149 
3 1233 0.7266 0.7035 0.6169 0.9190 
4 658 0.7876 0.7369 0.6147 1.4418 
5 415 0.8230 0.7535 0.6009 2.1025 
6 335 0.8569 0.7779 0.6224 2.9173 
7 234 0.8832 0.7996 0.6065 3.8762 
8 123 0.9032 0.8150 0.6320 5.1814 
9 165 0.9197 0.8363 0.5933 6.6778 
10 140 0.9319 0.8479 0.5894 7.9771 
11 93 0.9427 0.8606 0.6319 9.5838 
12 74 0.9494 0.8670 0.6112 11.5998 
13–15 76 0.9488 0.8637 0.6231 12.7240 
Total 13,392 0.8479 0.7918 0.6156 6.0680 

Data analysis 

The dataset is analyzed by using basic tools to compare D and R. The main illustrative tool is the difference between D 
and R. When D – R > 0, obviously, the magnitude of the estimate by D is higher than that by R. While knowing that R 
always underestimates IDP in the real-life testing settings, the values of D – R < 0 are indicative that D underestimates 
IDP even more than R. We remember that the magnitude of estimates by item-rest correlation coefficient (Rir) is lower 
than that by R and, hence, Rir underestimates IDP more than R. Therefore, the condition D – R > 0 is indicative that the 
magnitude of the estimates is in the order D > R > Rir. 

Findings 

D vs. R with binary items 

The first thing to note before the simulation is that, with deterministic patterns, irrespective of df(g) and df(X), D gives 
exact and correct estimate of IDP while R underestimates IDP practically always. An extreme estimate D = 1 will always 
be obtained when the order of cases in the score is identical with the order in the item as discussed above. As noted 
above, the perfect R = 1 can be reached only when df(X) = df(g), which is a highly specific condition. 

In the real-life settings, the estimates by D tend to underestimate IDP less than R does in the binary datasets as well as 
when df(g) = 2 (Table 3 and Figures 1 and 2; see also Figure 4). With binary items (n = 7 131), in 99.9% of the estimates 
the magnitudes of the estimates by D are higher than those by R (Figure 1). Similarly, with items with three categories 
in the marginal distribution (n = 2,715), in 81.2% of the estimates the magnitude of the estimate by D is higher than the 
estimate by R (Figure 2). Specifically, when items are extremely easy or extremely difficult, where the underestimation 
in R is the highest, D gives a notable advantage over R in reflecting the IDP of the item. This does not indicate that the 
value of D would be true or correct, or that IDP will be reflected with the same intensity as it happens in cases with 
ultimate discrimination D = 1. However, because it is difficult to think how D could overestimate IDP due to its being a 
nonparametric coefficient, the higher values in D when df(g) = 1 and 2 indicate that the estimates of IDP by D are closer 
to the true value in comparison with the estimates by R. 



p

2

g
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From Figure 1, we note an apparent asymmetricity in the U-shaped pattern of D – R. The reason is the too perfect 
artificial datasets. The right-hand side extreme leading to discrepancy of around 0.60 units of correlation is based on 
the real-life datasets. In the other extreme in the left-hand side with around 0.40 units of correlation the lower values 
are based on artificially high item-total correlations.  

 

 

Fig. 1. Difference between the estimates by D and R; df(g) = 1 

 

 

Fig. 2. Difference between the estimates by D and R; df(g) = 2 

D vs. R with polytomous items 

The simulation with the real-life items shows that when df(g) > 2 and when the number of the marginal categories in 
the item increases, R seems to be superior than D in reflecting IDP. Though the estimates by D are always exact in 
deterministic patterns of item discrimination irrespective of the number of categories in the items, in real-world 
datasets, the underestimation in D is evident (see Table 3 and Figures 3 and 4). With df(g) = 3, of the 1,233 estimates by 
R, 84% are higher in magnitude than those by D. With df(g) = 4, that is, in a typical Likert type scale, 98% of the 
estimates (n = 656) by R are higher in magnitude than those by D. It is evident that when df(g) > 2 and the number of 
categories in the item increases, R is superior over D reflecting the item discrimination. 
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Fig. 3. Difference between the estimates by D and R; df(g) > 2 

 

 

Fig. 4. Underestimation in D in relation with R as a function of df(g) based on Table 3 

Apparently, seen in Figure 4, the limitations of the original dataset in the simulation may mislead us to assume that the 
underestimation in D increases systematically with df(g). However, this is not true. Even when the degrees of freedom 
of the item are indefinitely high—that is, when the item is a continuous one—both D and R can reach the maximal value 
1. Behind this, we find the basic reality related to the mechanical connection of item and the score. In the measurement 
modelling settings, the association of g and X is, in fact, mechanically determined because the score is a compound of 
the items. As known, Somers’ D can reach the ultimate magnitude D = 1 always when the order of the cases in the score 
and in the item are identical. Notably, also R approximates the ultimate magnitude R = 1 when the item scale 
approximates the scale of the score. This is understandable when we remember the relation between the items and the 
score. If there would be only one item on the test, the correlation between the item and the “score” formed by this item 
would be, obviously, perfect. With two items on the test with the wide scale, usually interpreted as “parallel tests”, they 
both reflect (approximately) perfectly the (double-lengthen) total score. The more we have items on the test and the 
less there are categories in the items, the less the single item reflects the score.  
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Discussion 

Advances of Somers’ D 

Newson (2002) notes three general advantages of Somers’ D(X|Y) over the Pearson product-moment correlation. First, 
Somers’ D(X|Y) has a favorable characteristic to reach the values +1, 0, and –1 accurately. Second, Somers’ D(X|Y) is 
more robust in extreme observations and nonlinearity. Third, the interpretation of Somers’ D(X|Y) is straightforward, 
and it may be easier to interpret in words—within item analysis, the value of D(g|X) refers strictly to the (slightly 
modified) proportion of correctly located test takers in the item after they are ordered by the score. Additionally, the 
directional nature of Somers’ D(g|X) may be an advantage in the measurement modeling settings as discussed above. In 
the applied settings of measurement modeling, the specific form of Somers’ D(g|X), which corresponds to the logic used 
in item analysis, reflects this assumption better than Rit and Rir; with the latter two, the direction of the effect is not 
defined. 

Combining the advantages Newson (2002) points out, the discussion in the introduction part of this article, and the 
empirical findings in this article, D could be proposed as a “superior alternative for Rit”—as well as Rir because the 
latter underestimates IDP even more than the former—in reflecting true IDP with dichotomous items because of the 
following reasons: 

 

1. D reaches the values +1 and –1 accurately while Rit and Rir cannot reach the limits within practical 
measurement modeling settings. 

2. D is more robust for the extreme observations and for nonlinearity than Rit and Rir. 

3. D is superior to Rit and Rir with the dichotomous items, because when df(g) = 1, it is highly probable that D 
produces an estimate that underestimates IDP less than Rit and Rir does. 

4. D has a logical directional nature from the modern measurement–modeling viewpoint; while Rit and Rir tell 
about the unspecified association of the variables, D tells us how well the latent factor (score) explains the 
behavior in the manifested variable (item).  

5. D increases the possibilities of detecting the maximally discriminating test items in comparison with Rit and 
Rir;  D = 1 when the order of the test takers in the item is the same as in the score irrespective of the number of 
cases, degrees of freedom of the item and the score, the number of tied values, difficulty levels in the items, or the 
number of items on the test. Of these cases, Rit and Rir can reach the ultimate value only when df(X) = df(g). 

When it comes to , 

6. D utilizes the known composite of items in the analysis that is easy to use in further research while  refers 

to an unknown, unreachable, and hypothetical composite that is difficult to use in research. 

7. D can reach the ultimate values +1 and –1 while, by using the standard procedures, cannot find solution in 

the deterministic patterns. 

8. D is applicable and accurate with large, small, non-normal, or sparse cross-tables while the applicability and 

accuracy of the estimation result of the  depends on the form of the cross-tabulation and normality of the 

phenomenon. 

9. D is easy to calculate manually in practical test settings such as classroom testing, while calculation of  

requires specific software packages and complex procedures. 

 

Hence, for several reasons, Somers’ D could be a good alternative for Rit and Rir and to some extent also for . All in 

all, it would be safe—or may be even recommendable—to use D as an alternative to Rit and Rir as an estimator of IDP 
with dichotomous items. Though D reaches the ultimate values of IDP accurately, the estimates seem to include 
underestimation in certain conditions. It is obvious from the simulation that when the number of categories in the 
marginal distribution of the item exceeds 3, the probability of finding the estimates higher in magnitude by  than by 

D. Underestimation by D is also hinted by Göktaş and İşçi (2011) in their simulation with the same scale in both 
variables (df(Y) = df(X) = 3). The lower values by D are understood because of Greiner’s relation (Greiner, 1909), 
discussed by Kendall (1949) and Newson (2002). Greiner’s relation shows that if the scales of both the item and the 
score are continuous, except the values  and 0, the magnitude of the estimates by Somers’ D would be lower than 
those by Pearson correlation. 
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Limitations of the study 

Though the numbers of subtests and items used in the simulation are rather convincing, three main limitations of the 
study are raised here related to the simulation datasets. First, the whole set of 1,296 datasets and 13,392 items in the 
simulation is based on one basic dataset related to one specific grade (9) in a specific country with high results in 
mathematics. The limitations of this dataset were not studied further because the original dataset of 4500 students was 
used just as a “population” or “factory” for the smaller tests. It is possible that the results may have been somewhat 
different if some other grade or different test items would be used in the simulation. Most probably, however, the 
number of items is high enough to find reasonable variation between D and R.  

Second, because of the procedure of producing the smaller datasets, many of the items are somehow related to each 
other because they relate with the same score. We do not know, what is the real effect of this to the results. The 
magnitudes of the estimates within the “family” of the same test score do not differ from each other radically. Hence, 
the 13,392 estimates are not fully independent from each other, but they offer a kind of jittered dataset in some extent. 
Nevertheless, the idea in the study was to compare the behavior of the generally known indices in the real-life settings; 
now the relative magnitude of the estimates was studied in wide variety of different type of items regardless the 
possible relatedness of the tests and test items. Independent datasets would, most probably, confirm the same result. 
Replications of the design or another approach with more independent estimates may increase or knowledge of the 
matter. 

Third, the quality of the artificial datasets is questionable. This part of the dataset seems to be too perfect in 
comparison with the real-world datasets. This is seen as asymmetric distribution of residuals in Figure 1 and in few 
cases of binary items where the magnitude of R was higher than the value of D; these all came from the artificial 
combination of extreme difficulty level and high item–total correlation. From this point of view, wider simulations with 
extremely difficult real-life datasets would benefit us. 

Suggestions for the further studies 

Three directions of continuing studied with IDP are proposed based on the results. First, this article focused on 
comparing D and point-biserial correlation from the viewpoint of their capability to reflect the real IDP. Parallel 
analysis with bi- and polyserial and polychoric correlation coefficients or with r-polyreg correlation would enrich our 
knowledge of the matter.  

Second, the systematic nature of underestimation related to the higher degrees of freedom of item (see Figure 3 and the 
systematic decrease in the graph) hints that it could make sense to derive a “dimension-corrected Somers’ D” that could 
be even more useful tool in estimating IDP. While D is (one of) the superior option(s) to use instead of Rit and Rir in 
dichotomous cases, the dimension-corrected D could be a good tool in polytomous cases, specifically for item-analysis 
purposes but may also be wider in scope.  

Third, knowing that point-biserial correlation is embedded to all generally known estimators of reliability and that the 
estimates underestimate always the “real” IDP, it may motivate us to seek the “real” reliability by replacing  with 

some other estimator of IDP that could be “superior” than Rit and Rir. Studies in this area may enrich the discussions 
and practices within measurement modeling settings. 
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