Integrating Computational Thinking Into Mathematics Class: Curriculum Opportunities and the Use of the Bee-Bot
Carolina Salinas , María José Seckel , Adriana Breda , Carmen Espinoza
The incorporation of Computer Science teaching in educational systems has increased in recent years. Given international interest, Chile has promoted .
- Pub. date: February 15, 2024
- Online Pub. date: January 30, 2024
- Pages: 137-149
- 383 Downloads
- 906 Views
- 2 Citations
The incorporation of Computer Science teaching in educational systems has increased in recent years. Given international interest, Chile has promoted projects to promote the development of students' digital skills. Focusing on this new educational context, this research reports the results regarding the identification of computational concepts and practices that can be articulated with the contents and skills of the curriculum. of Chilean mathematics. for first grade of primary school based on the use of the Bee-Bot robot. For this, the study followed a qualitative approach, developing a case study of the Chilean study program with the content analysis technique and using, as analysis categories, computational concepts and practices from the field of educational computing. In total, 30 learning objectives of the study program were analyzed. The results indicate that, although there is little articulation between computational concepts and first grade content proposed in the curriculum, there is greater articulation between computational practices and mathematical skills suggested in the Chilean curriculum. It is concluded that Computational Thinking can be developed from the earliest school levels using the Bee-Bot robot (or similar), and this is demonstrated by the structure of the Chilean primary mathematics curricular program.
Keywords: Bee-bot, computational thinking, mathematical thinking, primary education.
2
References
Alsina, Á., & Acosta Inchaustegui, Y. (2018). Iniciación al álgebra en Educación Infantil a través del pensamiento computacional: Una experiencia sobre patrones con robots educativos programables. Unión, 14(52), 218–235. https://bit.ly/3HCY37N
Aranda, M. R., Estrada Roca, A., & Margalef Martí, M. (2019). Idoneidad didáctica en educación infantil: Matemáticas con robots Blue-Bot. [Didactical suitability in early childhood education: Mathematics with Blue-Bot robots]. EDMETIC, 8(2), 150–168. https://doi.org/10.21071/edmetic.v8i2.11589
Arlegui, J., & Pina, A. (2016). Didáctica de la robótica educativa. Dextra Editorial S.L.
Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of Research on Technology in Education, 39(3), 229–243. https://doi.org/10.1080/15391523.2007.10782481
Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning and Leading with Technology, 38(6), 20–23.
Bers, M. U. (2008). Engineers and storytellers: Using robotic manipulatives to develop technological fluency in early childhood. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on science and technology in early childhood education (pp. 105–125). Information Age.
Bers, M. U. (2020). Coding as a playground: Programming and computational thinking in the early childhood classroom (2nd ed.). Routledge.
Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood: Revisiting developmental assumptions through new technologies. In I. R. Berson & M. J. Berson (Eds.), High-tech tots: Childhood in a digital world (pp. 49–69). Information Age Publishing.
Bordignon, F., & Iglesias, A. (2020). Introducción al pensamiento computacional [Introduction to computational thinking]. Proyecto Pensamiento Computacional, Universidad Pedagógica Nacional, EDUCAR, & Ministerio de Educacion Argentina.
Bravo Sánchez, F. Á., & Forero Guzmán, A. (2012). La robótica como un recurso para facilitar el aprendizaje y desarrollo de competencias generales [Robotics as a resource to facilitate the learning and general skills development]. Education in the Knowledge Society, 13(2), 120–136. https://doi.org/10.14201/eks.9002
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (Vol. 1, pp. 1-25). American Educational Research Association. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf.
Caballero-Gonzalez, Y. A., & Muñoz-Repiso, A. G.-V. (2019). Fortaleciendo habilidades de pensamiento computacional en Educación Infantil: Experiencia de aprendizaje mediante interfaces tangible y gráfica [Enhancing computational thinking skills in early childhood education: Learning experience through tangible and graphical interfaces]. Revista Latinoamericana de Tecnología Educativa, 18(2), 133–149.
Cáceres, P. (2008). Análisis cualitativo de contenido: Una alternativa metodológica alcanzable [Qualitative content analysis: An achievable methodological alternative]. Psicoperspectivas, 2(1), 53–82. https://doi.org/kvmz
Diago Nebot, P. D., Arnau Vera, D., & González-Calero Somoza, J. A. (2018). Elementos de resolución de problemas en primeras edades escolares con Bee-bot [Elements of early school age problem solving with Beebot]. Edma 0–6: Educación Matemática en la Infancia, 7(1), 12–41. https://doi.org/md94
Domènech-Casal, J., Lope, S., & Mora, L. (2019). Qué proyectos STEM diseña y qué dificultades expresa el profesorado de secundaria sobre Aprendizaje Basado en Proyectos [What STEM projects do you design and what difficulties do secondary school teachers express about Project-Based Learning]. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 16(2), Article 2203. https://doi.org/gqp6
Dong, W., Li, Y., Sun, L., & Liu, Y. (2023). Developing pre-service teachers’ computational thinking: A systematic literature review. International Journal of Technology and Design Education. Advance online publication. https://doi.org/10.1007/s10798-023-09811-3.
Ferrada, C., Díaz-Levicoy, D., Salgado-Orellana, N., & Parraguez, R. (2021). Propuesta de actividades STEM con Bee-Bot en matemática [Proposals of mathematical activities with a Bee-bot child robot based on STEM education]. Edma 0-6: Educación Matemática en la Infancia, 8(1), 33–43. https://doi.org/gs6ffb
Fletcher, G. H. L., & Lu, J. J. (2009). Education: Human computing skills: Rethinking the K-12 experience. Communications of the ACM, 52(2), 23–25. https://doi.org/10.1145/1461928.1461938
Forsström, S. E., & Kaufmann, O. T. (2018). A literature review exploring the use of programming in mathematics education. International Journal of Learning, Teaching and Educational Research, 17(12), 18–32. https://doi.org/10.26803/ijlter.17.12.2
García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407–411. https://doi.org/10.1016/j.chb.2017.12.005
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051
Guba, E., & Lincoln, Y. (2002). Paradigmas en competencia en la investigación educativa. In C. A. Denmam & J. A. Haro (Eds.), Por los rincones: Antología de métodos cualitativos en la investigación social [Through the corners: Anthology of qualitative methods in social research] (pp. 113-145). Colegio de Sonora.
Guirado Maeso, C. M. (2022). Pensamiento computacional a través de la programación en Educación Primaria: Una propuesta didáctica [Computational thinking through programming in Primary Education: A didactic proposal] [Trabajo de Fin de Grado, Universidad de Jaén]. https://hdl.handle.net/10953.1/17302
Guzdial, M. (2008). Education: Paving the way for computational thinking. Communications of the ACM, 51(8), 25–27. https://doi.org/10.1145/1378704.1378713
Hitschfeld, N., Pérez, J., & Simmonds, J. (2015). Pensamiento computacional y programación a nivel escolar en Chile: El valor de formar a los innovadores tecnológicos del futuro [Computational thinking and programming at the school level in Chile: The value of training the technological innovators of the future]. Bits de Ciencia, 12, 28–33. https://goo.su/Q0aACCY
Jara, I., & Hepp, P. (2016). Enseñar ciencias de la computación: Creando oportunidades para los jóvenes de América Latina [Teaching computer science: Creating opportunities for Latin American youth]. Microsoft. https://bit.ly/3TP5pwf
Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41, 245–255. https://doi.org/10.1007/s10643-012-0554-5
Llorens Largo, F., García Peñalvo, F. J., Molero Prieto, X., & Vendrell Vidal, E. (2017). La enseñanza de la informática, la programación y el pensamiento computacional en los estudios preuniversitarios [The Teaching of Computer Science, Programming and Computational Thinking in Pre-University Studies]. Education in the Knowledge Society, 18(2), 7–17. https://doi.org/10.14201/eks2017182717
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012
Ministry of Education, Chile. (2012). Programa de estudio para primer año básico [Study program for the first year of basic education]. https://hdl.handle.net/20.500.12365/640
Ministry of Education, Chile. (2018). Plan nacional de lenguajes digitales [National plan of digital languages]. https://bit.ly/48osdr7
Mondada, F., Bonani, M., Riedo, F., Briod, M., Pereyre, L., Retornaz, P., & Magnenat, S. (2017). Bringing robotics to formal education: The Thymio open-source hardware robot. IEEE Robotics and Automation Magazine, 24(1), 77–85. https://doi.org/10.1109/MRA.2016.2636372
Moreno, I., Muñoz, L., Serracín, J. R., Quintero, J., Pittí Patiño, K., & Quiel, J. (2012). La robótica educativa, una herramienta para la enseñanza-aprendizaje de las ciencias y las tecnologías [Robotic education, a tool for the teaching-learning of the science and technology]. Education in the Knowledge Society, 13(2), 74–90. https://doi.org/10.14201/eks.9000
Muñoz, L., Villarreal, V., Morales, I., Gonzalez, J., & Nielsen, M. (2020). Developing an interactive environment through the teaching of mathematics with small robots. Sensors, 20(7), Article 1935. https://doi.org/10.3390/s20071935
Palmér, H. (2017). Programming in preschool--with a focus on learning mathematics. International Research in Early Childhood Education, 8(1), 75–87.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books Press.
Papert, S. (1985). Different Visions Of Logo. Computers in the Schools, 2(2–3), 3–8. https://doi.org/10.1300/J025v02n02_02
Pérez Buj, G., & Diago Nebot, P. D. (2018). Estudio exploratorio sobre lenguajes simbólicos de programación en tareas de resolución de problemas con Bee-Bot [Exploratory study on symbolic programming languages in problem-solving activities with Bee-Bot]. Magister, 30(1–2), 9–20. https://doi.org/10.17811/msg.30.1.2018.9-20
Sáez-López, J. (2017). Robots educativos y programación por bloques en educación infantil y primaria: Propuestas con Bee-Bot y mBot [Educational robots and programming by groups at preschool and primary level proposed by Bee-Bot and mBot]. In R. Cózar. & M. Del Valle de Moya (Eds). Entornos humanos digitalizados: Experiencias tic en escenarios educativos [Digital human environments: CTP experiences in educational scenarios] (pp. 35–48). Editorial Síntesis.
Sala-Sebastià, G., Breda, A., Seckel, M. J., Farsani, D., & Alsina, À. (2023). Didactic–mathematical–computational knowledge of future teachers when solving and designing robotics problems. Axioms, 12(2), Article 119. https://doi.org/10.3390/axioms12020119
Sánchez, T. (2019). La influencia de la motivación y la cooperación del alumnado de Primaria con robótica educativa: Un estudio de caso [The influence of motivation and cooperation of primary school pupils with educational robotics: A case study]. PANORAMA, 13(2-25), 117–140. https://doi.org/10.15765/pnrm.v13i25.1132
Sandín Esteban, M. P. (2000). Criterios de validez en la investigación cualitativa: De la objetividad a la solidaridad [Validity criteria in qualitative research: From objectivity to solidarity]. Revista de Investigación Educativa/Educational Research Journal, 18(1), 223–242. https://revistas.um.es/rie/article/view/121561
Seckel, M. J., Vásquez, C., Samuel, M., & Breda, A. (2022). Errors of programming and ownership of the robot concept made by trainee kindergarten teachers during an induction training. Education and Information Technologies, 27, 2955–2975. https://doi.org/10.1007/s10639-021-10708-8
Seckel, M. J., Breda, A., Font, V., & Vásquez, C. (2021). Primary school teachers’ conceptions about the use of robotics in mathematics. Mathematics, 9(24), Article 3186. https://doi.org/10.3390/math9243186
Seckel, M. J., Salinas, C., Font, V., & Sala-Sebastià, G. (2023). Guidelines to develop computational thinking using the Bee‑bot robot from the literature. Education and Information Technologies, 28, 16127-16151 https://doi.org/10.1007/s10639-023-11843-0
Seckel, M. J., Breda, A., Farsani, D., & Parra, J. (2022). Reflections of future kindergarten teachers on the design of a mathematical instruction process didactic sequences with the use of robots. Eurasia Journal of Mathematics, Science and Technology Education, 18(10), Article em2163. https://doi.org/10.29333/ejmste/12442
Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s perspective. Education and Information Technologies, 22, 469–495. https://doi.org/10.1007/s10639-016-9482-0
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003
Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers and Education, 148, Article 103798. https://doi.org/10.1016/j.compedu.2019.103798
Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., & Zou, X. (2020). Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review. Frontiers in Plant Science, 11, Article 510. https://doi.org/10.3389/fpls.2020.00510
Valverde Berrocoso, J., Fernández Sánchez, M. R., & Garrido Arroyo, M. D. C. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje [Computacional thinking and new learning ecologies]. RED Revista de Educación a Distancia, 46(3), 1–18. https://doi.org/10.6018/red/46/3
Vázquez Uscanga, E. A., Bottamedi, J., & Brizuela, M. L. (2019). Pensamiento computacional en el aula: El desafío en los sistemas educativos de Latinoamérica [Computational thinking in the classroom: The challenge in Latin American education systems]. RiiTE Revista Interuniversitaria de Investigación en Tecnología Educativa, 7, 36–47. https://doi.org/10.6018/riite.397901
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118
Zapata-Ros, M. (2019). Pensamiento computacional desenchufado [Computational thinking unplugged]. Education in the Knowledge Society, 20, 1–29. https://doi.org/10.14201/EKS2019_20_A18